If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-20t+20=0
a = 4.9; b = -20; c = +20;
Δ = b2-4ac
Δ = -202-4·4.9·20
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{2}}{2*4.9}=\frac{20-2\sqrt{2}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{2}}{2*4.9}=\frac{20+2\sqrt{2}}{9.8} $
| 25=18+h | | 9m+3=84.M= | | 5-4x=47 | | 4y-11=29.Y= | | X-5=(16x)^(1/2) | | 6m+6=24.M= | | -7x-(8-12x)=2x | | 1000f=4,135.135.135 | | 1/2+6=3/2(z-6) | | 54-t=8t | | 4(y+1)+7=5(2y-3) | | 4(x+2)=2(x=3) | | (8.6)(3.1)=(0.61)(1.9+x) | | 1x2=3 | | (4x+1)*x+1=151 | | 8.6x3.1=(0.61)1.9+x | | y/4-1=3(y-4) | | 6-3(-2+2x)=-7 | | 6/10=x/80 | | 1.25*x-x=135000 | | y4−1=3(y−4) | | 14x+5=27 | | 3(2x-8)=5x-(28-2x) | | 3x+7=-6x+25 | | -3x=-4x-4 | | (n+2)2=156 | | -5x=5-8 | | x+10=2(2x–11) | | -e=2e-12 | | -0.5x+3.5=1.5x-0.5 | | 2(x+11)=32 | | 1.6y=-1.3 |